
User Documentation

Gameplay Summary:

2-D rogue-like dungeon crawler with a gambling-based system.

A two-dimensional top-down view of a character whose objective is to complete unique
levels. To win a level, the player needs to defeat a certain number of enemies or survive
for a set amount of time. Upon completion, one of the room’s four doors opens, leading
the player to the next room. Upon entering the new room, the player is presented with
the characteristics of the next level, allowing them to make an informed betting decision.
A shop opens, allowing the player to wager money, health, and other game aspects, like
boosting enemy damage, to win more money at the end of the level. Each level gets
progressively more difficult, and if the player does not bet, their score will be lower than
it otherwise could be. When a player loses all of their health, they lose the run. A
leaderboard prompts the player to enter a username and displays their score. Win
money to get the highest score!

Installation:

Play Raging Gambler on Itch.io in the browser window!

https://miguelchaveznava.itch.io/raging-gambler

Gameplay:

Main Menu

1.​ Start Run: Directs player to normal arcade mode.
2.​ Tutorial: Directs the player to a sandbox-style tutorial mode where the score is

not saved. Tutorial mode allows the player to develop strategies and get a feel for
how the game is played inside a single room without betting conditions.

3.​ Leaderboard: Displays top 9 winnings next to each player’s username.

Pause Menu
The pause button is located in the top-right corner of the screen. Clicking it will freeze
the game, display the player’s current stats, and bring up a menu with the following
buttons:

1.​ Resume
2.​ Restart

https://miguelchaveznava.itch.io/raging-gambler

3.​ Quit: Brings the player to the main menu

​

Player

Controls: The classic W-A-S-D controls to move the player up-left-down-right.
Aim and fire projectiles by pointing and left-clicking the mouse. Reload
automatically by depleting all ammo or by pressing R.

Health: The red bar UI, located at the top middle of the screen, displays the
player’s health. It shrinks as the player loses health. When the bar is entirely
black, the player loses the game. After clearing a room, the player regenerates
health equivalent to the grunt’s base damage stat. Every five rooms, the player’s
maximum health is incremented by 1.

Money: The $ symbol UI at the top-left of the screen displays the player’s money.
Players earn money through defeating enemies and completing levels under
wager conditions. The final dollar amount represents the player’s score.

Ammo: The Ammo UI text, located at the bottom left of the screen, displays the
default amount of 10 bullets and the reloading action. The default reload time is
2.5 seconds.

Purchases and Gambling: Every time the player enters a new room, they are
prompted with either the wager shop or the reward shop. The reward shop
occurs every three rooms, and all other rooms are the wager shop. The player
can purchase permanent or temporary wagers that make the game more difficult
but grant them money at the end of the round. On the reward screen, the player
can purchase permanent upgrades to their stats.

Enemies

All enemies can perform a standard damage amount. Grunt and Thief only
damage the player by contact. Damage repeats for every second of sustained
contact. Shooters can damage players through contact or by firing projectiles.
Projectiles do standard damage. Shooters have a chance to perform critical hit
damage upon contact. Shooters maintain their critical hit chance with sustained
contact. Every five rounds, enemy damage and enemy health base stats
increment. Each of the following three enemy types has different traits:

1.​ Grunt: Standard enemy type. Slowly moves toward the player. High health. No
additional abilities.

2.​ Thief: Quickly moves around the room along a sinusoidal path. Low health. Its
trait is stealing player money upon contact.

3.​ Shooter: Slowly moves toward the player. Medium health. Its trait is shooting
projectiles that have a chance of critical hit damage upon contact (this chance
slowly increases as the game progresses).

Win Conditions

There is no end state for the game. Arcade mode progressively gets more
difficult until the player loses. However, win conditions exist to progress the
player further into the game. Upon entering a room, the player is informed of that
room’s win condition (which is randomly selected when the player enters the
room) before being prompted with the wager/reward screen. There are two
possible win conditions:

1.​ Time Room: Upon entering the room, the player is prompted with a screen
that says “Survive for: __”. During the round, the Time text UI, located at
the top-right of the screen, displays the remaining time until level
completion. As the game progresses, the survival time for each Time
Room will increase.

2.​ Enemy Room: Upon entering the room, the player is prompted with a
screen that says “Defeat: __ enemies”. The Enemies text UI, located at
the top-right of the screen, displays the remaining enemies to defeat for
level completion. As the game progresses, the number of enemies the
player must defeat for each Enemy Room will increase.

Gambling (Wager Screen and Reward Screen)

1.​ Wager Types:
Reverts after the room is completed:

a.​ Enemy population buff (Decreases spawn interval by 0.5 seconds)
b.​ Enemy health buff (Increases health of all enemies by 1)
c.​ Player reload debuff (Increases reload time by 0.5 seconds)

​ Permanent:
d.​ Player ammo count debuff (Decreases ammo capacity by 1)
e.​ Player health debuff (Decreases maximum health by 1)
f.​ Player speed debuff (Decreases movement speed by 0.5)

Note that there is a 20% chance that for any time the player sees the
wager screen, one of the wager options will be a jackpot wager. A jackpot

wager has 10x the rewards of a normal wager, incentivizing the player to
go all in.

Reward System and Power-ups (Permanent):
a.​ Increased Player Health (Increases current health by 1)
b.​ Increased Max Health (Increases maximum health by 1)
c.​ Increased Ammo Count (Increases ammo capacity by 1)
d.​ Decreased Reload Time (Decreases reload time by 0.5 seconds)
e.​ Increased Speed (Increases movement speed by 0.5)

Technical Documentation

How to Add to the Code

Download GitHub Desktop (https://desktop.github.com/download/) and clone our code
repository (https://github.com/JMBreard/CS370-Raging-Gambler) to create a local
version. Then, download the Unity Hub (https://unity.com/download) and download the
version of Unity we used to develop the game (Version 6000.0.37f1), which can be
found on the Unity Download Archive (unity3d.com/get-unity/download/archive). From
here, open the local version of the repository through Unity Hub by selecting only the
“Raging Gambler” folder. Unity will be able to open the project with all of our code. You
may now use the Unity Editor to make changes to the code, which will be reflected in
GitHub Desktop. Create new branches through GitHub Desktop to develop new
features or change code. Any new changes will be reflected in GitHub Desktop, which
will allow you to push changes to the local repository before pushing to the server
repository. For working on scenes, create a new test scene to change features, as
GitHub Desktop will have issues merging branches and code together if the same
scene is edited and other changes have been made before pushing.

https://desktop.github.com/download/
https://github.com/JMBreard/CS370-Raging-Gambler
https://unity.com/download
http://unity3d.com/get-unity/download/archive

General Design

The Raging Gambler is built around three main “managers” that act as the game’s
control center: game manager, gamble manager, and reward manager. The game
manager facilitates flow by sequencing each level’s progression. The gamble manager
and reward manager facilitate game balance and enact the gambling mechanic through
altering player and enemy stats. The gamble manager focuses on monetary rewards by
betting on surviving a room’s conditions. The reward manager allows the player to use
money to buy back health, increase speed, or boost the stats needed to compensate for
room conditions. Although surviving longer helps, the path to the leaderboard is winning
the most money.

This is a general overview of script interactions for player and enemy’s money and
health changes. Player attributes are altered through the PlayerController and
HealthController scripts. Enemy attributes are altered through the EnemyController,
EnemySpawner, and HealthController scripts. HealthController communicates with the
PlayerMoney script and implements the IDamageable interface directing health and
damage control functions. Additionally, HealthController communicates with the Enemy
script for Thief enemies to steal playerMoney and Shooter enemies to perform critical
damage.

Architecture

Game Manager
Non-Script Components:
Four 2D Box Colliders: One collider just off-screen of each doorway to detect, using
OnTriggerEnter2D(Collider2D collision), when the player is in the next room.

GameManager.cs

1.​ Room Generation: Creates a new room connected to one side of the current
room. A door opens into the new room. The camera pans to the new room when
the player crosses its threshold. Handles enemy difficulty scaling and
regenerates player health.

a.​ moveToNextRoom(): see OnTriggerEnter2D(Collider2D collision) for
updated room variables.

i.​ KillAll() destroys remaining enemies in the current room
ii.​ Increment() raises time and enemy count as a function of level

1.​ remainingTime += time_difficulty * level_counter
2.​ enemiesNeeded += enemy_count_difficulty * level_counter

iii.​ currentDoorIndex represents the four doors within a room as an
integer between 0 and 3. switch(currentDoorIndex) randomly
chooses a door to open as long as it is not the door the player
came from. nextRoom will align with this door based on newPos.x
or newPos.y.

iv.​ NewRoomObstacles(newPos) populates the new room with
obstacles. It is a variation of SpawnObstacles() that generates
obstacles in new rooms with a random amount and placement.

v.​ WagerCounts marks the selected wager by multiplying it by 1 and
all others by 0. When the wagers are looped through, only the
marked reward value is added to playerMoney. Additionally,
WagerCounts will debuff enemies according to wagers purchased.

vi.​ ScaleEnemies() is called every 5 levels to increase enemy health
and damage output by 1.

1.​ For balance, player max health increments by 1 every 5
levels.

vii.​ HealthRegen() rejuvenates player health at the end of each level.
1.​ Health rejuvenated = enemy’s base damage stat (dmg_ctr)
2.​ Does not exceed player max health

2.​ Win Conditions: Either enemy or time-based. The player must survive for a set
amount of time or defeat a set number of enemies.

a.​ pickRoomCondition() is triggered when the player enters a room. It
randomly chooses the win condition and formats its associated UI text.

b.​ Update() decrements timeRoom’s remainingTime. When time runs out, the
associated UI text is deactivated, as well as the enemySpawner.
moveToNextRoom() is triggered.

c.​ EnemiesLeftUpdate() is activated when the player enters a room and is
triggered from the HealthController script when an enemy dies.
enemiesNeeded decrements and the associated UI text is updated.

i.​ Win() activates when enemiesNeeded = 0. All enemies and the
room type are set to false then moveToNextRoom() is called.

3.​ Menu Handling: Triggers room condition prompt, the gamble manager/wager
shop, game over screen, and title screen with leaderboard.

a.​ GameOver() destroys all enemies, activates the UI, and displays the
player’s final money amount as the score.

b.​ Restart() loads the scene manager’s Title Scene or Leaderboard Title
Screen. The scoreManager prompts the player with playerMoney and a
userName entry.

c.​ moveToShop() is triggered through the ShopTrigger script assigned to the
door objects. It activates the WagerGenerator UI.

d.​ isMouseOverUIIgnore() senses mousePosition as an input to determine if
it is hovering over a UI using raycasting. If it is not, then it is ignored. This
prevents the mouse from triggering other events outside of the opened
menu.

4.​ Housekeeping: Increments win conditions, rewards player’s wager winnings,
destroys current room enemies, resets obstacles, and restarts game to
leaderboard with sound handling.

CrosshairController.cs

The crosshair controller script makes the Dynamic Crosshair Game Object
replace the default OS mouse whenever the player is not hovering over UI (such
as the pause menu) using raycast detection. The script also makes the crosshair
flash red every time the player shoots.

●​ Awake() hides the OS cursor (Cursor.visible = false, Cursor.lockState = None),
assigns defaultSprite and defaultColor to the serialized SpriteRenderer.

●​ Every frame Update() checks: EventSystem.current.IsPointerOverGameObject().
○​ True: Shows the system cursor and disables crosshairRenderer.
○​ False: Hides the system cursor, enables the sprite, then positions it at

Camera.main.ScreenToWorldPoint(Input.mousePosition).
●​ If the pausePanel is active (pausePanel.activeSelf), the crosshair sprite stays

hidden so it never sits on top of the menu UI.
●​ Shoot flash feedback – OnEnable() subscribes to PlayerController.OnShoot;

handler starts the FlashCrosshair() coroutine:
○​ Swap to shootSprite and shootColor.
○​ yield return new WaitForSeconds(flashDuration) (0.01 - 0.5 s via

inspector).
○​ Revert to the default sprite and color. Any running coroutine is first

cancelled by StopAllCoroutines() to avoid overlap.

Gamble Manager

1.​ Wagers: Creates a kind of shop that offers temporary and permanent debuffs
under which to play. If the player survives the round, then a reward is collected,
and temporary debuffs expire.

a.​ Start() instantiates the wager shop as an array of items that contain the
following elements: name, cost, reward, and image. The image has an
event listener that enables a wager upon clicking.

b.​ BuyWager() is called when a wager is clicked. It subtracts the cost from
playerMoney and applies the condition.

c.​ ApplyWager() is called when a wager is clicked through BuyWager().
switch(wager.name) checks which wager was selected and triggers the
function, communicating with the appropriate script. This will change the
desired player or enemy stat (interactions described in the general
design).

d.​ UpdateWagers() updates costs and rewards as a function of level. There
is a 20% chance that a wager shop will generate rewards at 10x scale for
a type of jackpot functionality.

i.​ Scale = 1.4 (20% chance of being 10)
ii.​ Cost = base_cost * (1 + (levelCounter * 1.1 / 10))
iii.​ Reward = base_reward * (1 + (levelCounter * scale / 10))

e.​ ScaleEnemies() increments enemy health and damage by 1. Dmg_ctr
increments by 1.

i.​ Dmg_ctr is used to scale enemies and calculate health
regeneration.

Reward Manager

RewardManager.cs

1.​ Rewards: Creates a shop that offers the player stat buffs at a high price.
Rewards are significantly more expensive than wagers, so players cannot
overbuy and make the game easy.

a.​ Start() instantiates the reward shop as an array of items that contain the
following elements: name, cost, and image. The image has an event
listener that enables a wager upon clicking.

b.​ BuyReward() is called when a reward is clicked. It subtracts the cost from
playerMoney and applies the condition.

c.​ ApplyReward() is called when a reward is clicked through BuyReward().
switch(reward.name) checks which reward was selected and triggers the
function communicating with the appropriate script. This will change the
desired player stat (interactions described in general design).

d.​ UpdateRewardCosts() updates reward costs as a function of level.
i.​ Cost = base_cost * (1 + (levelCounter * 1.5 / 10))

e.​ HealthRegen() regenerates the player's currentHealth by the enemy’s
base damage count, which is tracked using dmg_ctr.

Player

Non-Script components:
1.​ RigidBody2D (allows Unity physics engine to act upon the player)
2.​ Capsule Collider 2D (enables collision detection)
3.​ Animator (handles animations)

1.​ Controls: Player direction is defined by cursor position in the PlayerRotation.cs

script. Player movement is defined by W-A-S-D controls, the reload key is R, and
the player’s movement speed, all of which are controlled by the
PlayerController.cs script.

a.​ reduceSpeed() is a GambleManager function that reduces the player's
movement speed.

2.​ Projectiles and Ammo: PoolManager.cs script instantiates the bullet prefab and
allows the player to fire. PlayerController.cs script handles firing, reloading, and
ammunition.

a.​ PoolManager.cs
i.​ GenerateBullets() instantiates the desired number of _bulletPrefab

game objects inside the pool manager. The pool manager reduces
clutter within the sample scene. No bullets are active.

ii.​ RequestBullet() loops through the _bulletPool for inactive bullets to
return to the player. If none exist, then a newBullet prefab is
instantiated in the pool for the player to fire.

b.​ PlayerController.cs
i.​ Fire() decrements _currentAmmoCount and then calls

RequestBullet(). The bullet prefab position is set in front of the
player, and its trajectory vector is set according to player rotation
(direction as defined in PlayerRotation.cs script).

ii.​ Reload() is an IEnumerator coroutine that makes false _canFire
and reloading booleans and forces the player to
WaitForSeconds(reloadTime). The default is 3 seconds. Booleans
are reset to true.

iii.​ OnEnable() instantiates the player and initializes starting values. 10
bullets for _currentAmmoCount.

iv.​ OnDisable() importantly disables references to destroyed objects,
precluding null reference errors.

v.​ increaseReloadTime() and decreaseMaxAmmoCount() are
GambleManager functions that increase player reload time and
decrease player max ammo count.

3.​ Health: Since the player deals damage using bullets, the ProjectileMovement.cs
script defines the IDamagable interface with the following functions: Health { get;
set; }, Damage(), and TakeDamage(int amount). This is implemented by the
HealthController.cs script which triggers HealthBar changes.

a.​ ProjectileMovement.cs
i.​ OnTriggerEnter2D() damages the game object that the bullet

comes into contact with. The bullet is hidden.
ii.​ Hide() deactivates the bullet after 1 second or a collision.

b.​ HealthController.cs
i.​ Damage() is defaulted to 1 health by calling TakeDamage(1).
ii.​ TakeDamage() is called by Damage() and other mechanisms like

critical hit. If a player is not dead, decrement currentHealth. If
currentHealth is 0, then trigger Die(). Update the health bar.

iii.​ Die() will give the player $5 for killing an enemy and will deactivate
obstacles or destroy game objects whose health is 0.

iv.​ reduceMaxHealth() and increaseMaxHealth() are GambleManager
functions that reduce player max health and increase enemy max
health.

4.​ Money: PlayerMoney is the score. Money is used to purchase wager conditions
and player stat boosts in the Reward Shop. PlayerMoney cannot be less than 0.

a.​ Start() initializes playerMoney to $100
b.​ Steal() is an Enemy function that steals money from the player when a

thief makes contact.
i.​ playerMoney -= level_counter * 2

c.​ addMoney() is called to adjust the player’s money. This is done by the
Wager Shop and upon enemy death.

d.​ subtractMoney() is called to adjust the player’s money. This is done by the
Wager Shop, Reward Shop, and thief enemy types.

e.​ UpdateMoneyText() updates the UI display at the top-left of the screen.

Enemy Spawner

EnemySpawner.cs script creates enemies centered around the player, but not on
the player. It provides some functionality like adjusting spawn rates and enemy
health (level scaling and wagers).

a.​ SpawnEnemy() will randomly spawn enemies from its enemySpawnData
array, which is made up of instances of an EnemySpawnData struct. Each
object of the struct includes an enemyPreab and its corresponding
spawnChance. The selected enemySpawnData’s enemyPrefab is
spawned a set distance from the player (using a 2D unit vector given a

random direction and a magnitude of spawnDistance, which is set to 10 to
keep enemy spawning within the room’s bounds). The method then
performs a comparison so that its spawn position will recalculate if it is
less than a minimum distanceFromPlayer (set to 4) so that no enemies
spawn too close to the player.

i.​ Grunt spawn chance = 50%
ii.​ Thief spawn chance = 30%
iii.​ Shooter spawn chance = 20%

b.​ Update() calls SpawnEnemy() at an interval defined by spawnInterval
The following methods are all called by GambleManager.cs when the player​
makes wagers or prucahses rewards that impact enemy health:

c.​ StopSpawning() disables the isSpawning boolean to deactivate enemy
spawning upon level completion.

d.​ increaseSpawnRate() and decreaseSpawnRate() adjust the default spawn
rate of 2 seconds by 0.5 second increments.

e.​ addEnemyHealth() and subtractEnemyHealth() adjust the enemy health
base stat by + or - 1.

i.​ Grunt base health = 3
ii.​ Shooter base health = 2
iii.​ Thief base health = 1

f.​ GetSpawnRate() and GetEnemyHealthBuff() expose the current interval
and health bonus.

Enemies

The three enemy prefabs each share several components with each other and
the player:

4.​ RigidBody2D (allows Unity physics engine to act upon enemies)
5.​ Capsule Collider 2D (enables collision detection)
6.​ HealthController
7.​ Animator (handles animations)

​
​ Grunt (Default Enemy)

Controller: EnemyController.cs provides damage and movement functionality, as
well as defining special traits.

1.​ FixedUpdate() defines enemy movement toward the player’s position. If an
enemy encounters an obstacle, then it will move perpendicular to its
current vector until it clears the obstacle. Also calls FlipSprite().

2.​ OnCollisionEnter2D() instantiates playerHealth and playerMoney so that
enemies can deal damage and steal as defined by its traits.

3.​ OnCollisionExit2D() ends the enemy’s damage coroutine.

4.​ SustainedDamage() compares game time to dmgTimer to deal damage for
every 1 second of sustained enemy contact

5.​ Trait() calls the Steal() and CriticalHit() functions for thief and shooter
enemy types (stealing is defined in the PlayerMoney.cs script)

6.​ CriticalHit() deals damage to player health in proportion to the current level
(currently 1 to 1, but an adjustable multiplier exists). The chance of a
critical hit activating scales with level but caps at 33% on level 17.

7.​ FlipSprite() takes the enemy’s current movement direction as a parameter
and flips the enemy’s sprite along the x-axis to match the direction it’s
moving in.

Thief (CurvedEnemy)
The Thief enemy uses the CurvedEnemy.cs script, which inherits from the
EnemyController.cs script instead of using EnemyController.cs. The only
overridden method is FixedUpdate(), which is modified so that when the
enemy moves toward the player, it adds a perpendicular offset equal to
sin(Time.time * curveFrequency) * curveAmplitude, producing an
oscillating sideways deviation. The resulting vector is normalised and fed
to rb.MovePosition, so the enemy drifts toward the player on an oscillating
path whose width and speed are defined by curveAmplitude and
curveFrequency.

Shooter (ShooterEnemy)
The Shooter enemy uses the ShooterEnemy.cs script, which likewise
inherits from EnemyController.cs. Its only overridden method is
FixedUpdate(); after calling the default EnemyController movement, it
increments shootTimer and, whenever shootTimer ≥ shootRate, resets the
timer and calls ShootAtPlayer(). ShootAtPlayer() instantiates the
projectilePrefab at the enemy’s current position, calculates the normalised
vector toward the player, rotates the projectile to face that direction, and
assigns direction * projectileSpeed to its Rigidbody2D.linearVelocity.
This enemy chases the player just like the default enemy, but also
periodically fires projectiles at a rate and speed defined by shootRate and
projectileSpeed.

Boss Feature Documentation (in repository but not in main branch)

Gameplay:

Boss Rooms
Boss Encounter: Every 10 levels, the player faces a unique boss battle instead of
regular time or enemy-based rooms. The "Boss" text appears at the top-right of the
screen, indicating a boss room.
Win Condition: To complete a boss room, the player must defeat the boss enemy. Boss
minions do not count toward the win condition.
Rewards: Boss battles provide significant monetary rewards - defeating a boss yields
200 money, with additional rewards when bosses transition between phases.

Boss Types
Basic Boss (SimpleBoss): A larger, stronger enemy with 500 health that slowly pursues
the player. It periodically spawns minions to assist in the battle.
Advanced Boss (BossEnemy): A multi-phase boss with 1000 health that changes attack
patterns and appearance as its health decreases. Features more complex attack
patterns, including projectiles and AOE attacks.

Boss Mechanics
Boss Health: Bosses have significantly more health than regular enemies (500-1000
HP).
Health Bar UI: A special boss health bar appears at the top of the screen during boss
encounters, showing the boss's name and remaining health.
Phases: Advanced bosses transition through multiple phases (at 60% and 30% health),
changing color, size, and attack patterns with each phase.
Minion Spawning: Bosses periodically spawn minion enemies to assist them in battle.
 - Minions have 2 health points and die in two hits
 - Minions are marked as "boss minions" and don't affect the room's win condition

Boss Attacks
Basic Movement: All bosses move toward the player, similar to standard enemies but
typically slower.
Projectile Attacks: Advanced bosses fire projectiles at the player.
Spread Attacks: Advanced bosses can fire multiple projectiles in a spread pattern.
AOE Attacks: Advanced bosses can perform area-of-effect attacks, firing projectiles in
all directions.
Minion Summoning: Bosses periodically spawn minion enemies to assist them in battle.

Technical Implementation:

Boss System Architecture

Boss Spawning: The GameManager handles spawning the boss after a delay when a
boss room is created (every 10 levels).
Boss Health: Both boss types implement the IDamagable interface to handle damage
and health mechanics.
Boss UI: A dedicated BossUI script manages the boss health bar and name display.
Phase Management: The BossEnemy script handles phase transitions, changing
appearance and attack patterns based on health thresholds.

Boss Room Management
Room Identification: The GameManager sets a "bossRoom" flag when creating a boss
level.
Win Condition: Boss rooms ignore the standard enemy counter and time mechanics,
focusing solely on boss defeat.

Boss Defeat: When a boss is defeated, it calls GameManager.BossDefeated() which
triggers the completion of the room.

Minion Management
Minion Spawning: Bosses periodically spawn minions to assist in the battle.
Minion Properties: Minions are flagged with isBossMinion = true to prevent them from
affecting the room's win condition.
Minion Death: When minions die, the EnemiesLeftUpdate() method is not called due to
the isBossMinion flag, ensuring only the boss's defeat triggers the win condition.

Library Dependencies:

●​ UnityEngine – core engine API (GameObject lifecycle, transforms, physics,
audio, etc.).

●​ UnityEngine.UI – built-in UI system: Canvas, Image, Button, Slider, and related
components.

●​ TMPro – TextMesh Pro package for crisp, richly styled in-game text.
●​ System.Collections – non-generic collections (ArrayList, Queue) and the

IEnumerator interface.
●​ System.Collections.Generic – generic collections such as List<>, Dictionary<>,

HashSet<>.
●​ UnityEngine.EventSystems – event / ray-cast layer that drives UI clicks, pointer

detection, and EventSystem utilities.
●​ UnityEngine.SceneManagement – scene loading, unloading, and additive scene

operations.

●​ Unity.Collections – high-performance, native containers (NativeArray, NativeList)
usable with Burst jobs.

●​ System – fundamental C# types and language constructs (Math, Random,
exceptions, attributes, etc.).

References:

1.​ Connecting GitHub to Unity:
a.​ https://www.youtube.com/watch?v=qpXxcvS-g3g

2.​ Creating Basic 4D Movement:
a.​ https://www.youtube.com/watch?v=fcKGqxUuENk&t=19s

3.​ Creating Projectiles:
a.​ https://medium.com/nerd-for-tech/2d-player-shooting-mechanics-in-unity-6

fda9c8e92fd#d0bb
4.​ Creating Obstacles:

a.​ https://www.youtube.com/watch?v=dpxPc3t3kR8
5.​ Unity Basic Tutorial:

a.​ https://www.youtube.com/watch?v=XtQMytORBmM
6.​ Create Pause Menu:

a.​ https://www.youtube.com/watch?v=MNUYe0PWNNs
7.​ Changing Scenes:

a.​ https://www.youtube.com/watch?v=3SdMFPdSi7M
8.​ Health and Damage:

a.​ https://www.sharpcoderblog.com/blog/adding-health-system-in-unity-game
9.​ Health Bar:

a.​ https://www.youtube.com/watch?v=0T5ei9jN63M
10.​Money System:

a.​ https://www.youtube.com/watch?v=XJlPF4GtydU
11.​Gambling System UI:

a.​ https://www.youtube.com/watch?v=aWd17lOdxJs
12.​Sliding Camera:

a.​ https://www.youtube.com/watch?app=desktop&v=PA5DgZfRsAM&t=0s
13.​Countdown Timer:

a.​ https://www.youtube.com/watch?v=POq1i8FyRyQ
14.​Mouse Over UI:

a.​ https://www.youtube.com/watch?v=ptmum1FXiLE
15.​Leaderboard UI:

https://www.youtube.com/watch?v=qpXxcvS-g3g
https://www.youtube.com/watch?v=fcKGqxUuENk&t=19s
https://medium.com/nerd-for-tech/2d-player-shooting-mechanics-in-unity-6fda9c8e92fd#d0bb
https://medium.com/nerd-for-tech/2d-player-shooting-mechanics-in-unity-6fda9c8e92fd#d0bb
https://www.youtube.com/watch?v=dpxPc3t3kR8
https://www.youtube.com/watch?v=XtQMytORBmM
https://www.youtube.com/watch?v=MNUYe0PWNNs
https://www.youtube.com/watch?v=3SdMFPdSi7M
https://www.sharpcoderblog.com/blog/adding-health-system-in-unity-game
https://www.youtube.com/watch?v=0T5ei9jN63M
https://www.youtube.com/watch?v=XJlPF4GtydU
https://www.youtube.com/watch?v=aWd17lOdxJs
https://www.youtube.com/watch?app=desktop&v=PA5DgZfRsAM&t=0s
https://www.youtube.com/watch?v=POq1i8FyRyQ
https://www.youtube.com/watch?v=ptmum1FXiLE

a.​ https://www.youtube.com/watch?v=-O7zeq7xMLw
b.​ https://www.youtube.com/watch?v=iAbaqGYdnyI

Future

The team achieved its initial goal of implementing a working 2D rogue-like dungeon
crawler with gambling-based mechanics. We built the framework to be easily
expandable due to its modular system (as described in general architecture). Overall,
we are happy with the result. However, there are still so many things that can be done
to make it even better. Here are some of our ideas.

1.​ A survival mode could easily be created with a couple of tweaks to the tutorial
and arcade mode. The scoring system should be time-based rather than
money-based. The player should only exist in one room and the reward shop
should appear every one to two minutes. Enemy scaling should be time-based so
that its health and damage increment alongside the reward shop’s appearance.
We found that people really enjoyed the tutorial-style gameplay, and this could be
a fun way to expand it.

2.​ Boss System mechanics were implemented in a branch outside of main branch.
We did not have an opportunity to integrate the system into the game. This could
be another fun way to reap huge winnings. We envisioned a boss fight every ten
levels. There are two approaches for winning or losing these. The first approach
is that losing ends the run, but winning gives a huge payout. The second is that
dying would not end the game, but simply continue to the next level. In the
second case, the boss fight could be an opportunity to reap interesting rewards
like stat boosts or different weapons that increase survival chances.

3.​ In terms of aesthetics, we imagined a casino floor with roulette tables, slot
machines, blackjack, etc. We had a couple of designs, but found that it impeded
player movement. Due to time and how well the initial small room design worked,
we reverted to a simple layout. However, it should be possible to have a layout
with all of the typical casino elements while providing the player sufficient space.

4.​ Feature List TODO (specific):
a.​ Projectile types:

i.​ Bird shot: spread of 3-5 bullets like a shotgun
ii.​ Burst fire: volley of 3-5 bullets in quick succession
iii.​ Auto: press and hold the left mouse button to rapid fire.
iv.​ Grenade: Deals area damage, affecting multiple enemies
v.​ Aesthetic: Options for projectiles look like poker chips, playing

cards, etc.

https://www.youtube.com/watch?v=-O7zeq7xMLw
https://www.youtube.com/watch?v=iAbaqGYdnyI

b.​ Obstacle types: Shooting different obstacle types should give money
based on chance. This would be another decision point because obstacles
are useful for avoiding enemies, but could also raise the player’s score.
We only use slot machines, but it could be fun to implement other
elements like poker tables, roulette, and craps (dice throwing).

c.​ Dodge: The player should have a roll or dash mechanic to quickly evade
enemies. This should have a recharge rate (3-5 seconds) and could either
parry all damage (0.5 second invincibility) or take one enemy’s base stat
damage. It should not allow the player to be damaged per enemy contact,
otherwise, the evasion functionality is diminished.

d.​ Camouflage: The carpet colors should randomly change for each room. It
should toggle between red, yellow, and blue to match the enemy colors.
Currently, only the blue carpet is implemented, which camouflages the
shooter enemy type.

